Posts

Showing posts from May, 2024

Winamp Source Code Will be Opened Up, Company Says

Image
Recently the company currently in charge of the Winamp media player – formerly Radionomy, now Llama Group – announced that it will be making the source code of the player ‘available to developers’. Although the peanut gallery immediately seemed to have jumped to the conclusion that this meant that the source would be made available to all on the announced 24 September 2024 date, reading between the lines of the press release gives a different impression. First there is the sign-up form for ‘FreeLlama’ where interested developers can sign up, with a strong suggestion that only vetted developers will be able to look at the code, which may or may not be accompanied by any non-disclosure agreements. It would seem appropriate to be skeptical considering Winamp’s rocky history since AOL divested of it in 2013 with version 5.666 and its new owner Radionomy not doing much development on the software except for adding NFT and crypto/blockchain features in 2022. The subsequent Winamp online

Improved 3D Scanning Rig Adds Full-Sized Camera Support

Image
There are plenty of reasons to pick up or build a 3D scanner. Modeling for animation or special effects, reverse engineering or designing various devices or products, and working with fabrics and clothing are all well within the wide range of uses for these tools. [Vojislav] built one a few years ago which used an array of cameras to capture 3D information but the Pi camera modules used in this build limited the capabilities of the scanner in some ways. [Vojislav]’s latest 3D scanner takes a completely different approach by using a single high-quality camera instead . The new 3D scanner is built to carry a full-size DSLR camera, its lens, and a light. Much more similarly to how a 3D printer works, the platform moves the camera around the object in programmable steps for the desired 3D scan. The object being scanned sits on a rotating plate as well, allowing for the entire object to be scanned without needing to move the camera through a full 180° in two axes. The scanner can also be

Emulating Biology For Robots With Rolling Contact Joints

Image
Joints are an essential part in robotics, especially those that try to emulate the motion of (human) animals. Unlike the average automaton, animals are not outfitted with bearings and similar types of joints, but rather rely sometimes on ball joints and a lot on rolling contact joints (RCJs). These RCJs have the advantage of being part of the skeletal structure, making them ideal for compact and small joints. This is the conclusion that [Breaking Taps] came to as well while designing the legs for a bird-like automaton. These RCJs do not just have the surfaces which contact each other while rotating, but also provide the constraints for how far a particular joint is allowed to move, both in the forward and backward directions as well as sideways. In the case of the biological version these contact surfaces are also coated with a constantly renewing surface to prevent direct bone-on-bone contact. The use of RCJs is rather common in robotics, with the humanoid DRACO 3 platform as detai

Raspberry Pi Files Paperwork With The London Stock Exchange

Image
If you’re a regular visitor to the Raspberry Pi website and you have a sharp eye, you may have noticed during the last few days a new link has appeared in their footer. Labelled “ Investor relations “, it holds links to the documents filed with the London Stock Exchange of their intention to float. In other words, it’s confirmation of their upcoming share offering. It has been interesting to watch the growth of Raspberry Pi over the last twelve years, from cottage industry producing a thousand boards in China, to dominating the SBC market and launching their own successful silicon. Without either a crystal ball or a window into Eben Upton’s mind, we’re as unreliable as anyone else when it comes to divining their future path. But since we’re guessing that it will involve ever more complex silicon with a raspberry logo, it’s obvious that the float will give them the investment springboard they need. For those of us who have been around for a long time this isn’t the first company in

Is The Frequency Domain a Real Place?

Image
When analyzing data, one can use a variety of transformations on the data to massage it into a form that works better to tease out the information one is interested in. One such example is the application of the Fourier transform, which transforms a data set from the time domain into the frequency domain. Yet what is this frequency domain really? After enticing us to follow the white rabbit down a sudden plummet into the intangible question of what is and what is not, [lcamtuf] shows us around aspects of the frequency domain and kin. One thing about the (discrete) Fourier transform is that it is excellent at analyzing data that consists out of sinewaves, such as audio signals. Yet when using the Fourier transform for square waves, the resulting output is less than useful, almost as if square waves are not real. Similarly, other transforms exist which work great for square waves, but turn everything else into meaningless harmonics. Starting with the discrete cosine transform (DCT), t

MIDI Spoon Piano Is Exactly What You Think It Is

Image
Pianos traditionally had keys made out of ivory, but there’s a great way to avoid that if you want to save the elephants. You can build a keyboard using spoons, as demonstrated by [JCo Audio].  The build relies on twelve metal spoons to act as the keys of the instrument. They’re assembled into a wooden base in a manner roughly approximating the white and black keys of a conventional piano keyboard, using 3D-printed inserts to hold them in place. They’re hooked up to a Raspberry Pi Pico via a Pico Touch 2 board , which allows the spoons to be used as capacitive touch pads. Code from [todbot] was then used to take input from the 12 spoons and turn it into MIDI data. From there, hooking the Pi Pico up to a PC running some kind of MIDI synth is enough to make sounds. It’s a simple build, but a functional one. Plus, it lets you ask your friends if they’d like to hear you play the spoons. The key here is to make a big show of hooking your instrument up to a laptop while explaining you’re

Big Server Fan Becomes Fume Extractor

Image
[Anthony Kouttron] wanted a fume extractor for his personal electronics lab, but he didn’t like the look of the cheap off-the-shelf units that he found. Ultimately, he figured it couldn’t be that hard to build own portable fume extractor instead. The build is based around a mighty 110-watt centrifugal fan from an IBM server that’s rated at approximately 500 CFM. It’s a hefty unit, and it should be, given that it retails at over $200 on DigiKey. [Anthony] paired this fan with off-the-shelf HEPA and activated carbon filters. These are readily available from a variety of retailers. He didn’t want to DIY that part of the build, as the filter selection is critical to ensuring the unit actually captures the bad stuff in the air. He ended up building a custom power supply for the 12-volt fan, allowing it to run from common drill batteries for practicality’s sake. Few of us have need for such a beefy fume extractor on the regular. Indeed, many hobbyists choose to ignore the risk from sold

Pump It Up Gets Homebew GBA Port That Rocks

Image
Pump It Up is a popular music video game that hails from South Korea. It’s similar in vibe to  Dance Dance Revolution and In The Groove , but it has an extra arrow panel to make life harder.  [Rodrigo Alfonso] loved it so much, he ported it to the Game Boy Advance. The port looks fantastic, with all the fast-moving arrows and lovely sprite-based graphics you could dream of. But more than that, [Rodrigo’s] port is very fully featured. It doesn’t rely on tracked or sampled music, instead using actual GSM audio files for the songs. It can also accept input from a PS/2 keyboard, and you can even do multiplayer over the GBA’s Wireless Adapter. What’s even cooler is that some of the game’s neat features have been broken out into separate libraries so other developers can use them. If you need a Serial Port library for the GBA, or a way to read the SD card on flash carts, [Rodrigo] has put the code on GitHub. As you might have guessed, this isn’t the first time [Rodrigo] has pushed th

Think Again: Tips On Finding and Flexing Your Creativity

Image
Technical work — including problem-solving — is creative work. In addition, creativity is more than a vague and nebulous attribute that either is or isn’t present when it’s needed. A short article by [Anthony D. Fredericks] gives some practical and useful tips on energizing and exercising one’s creativity . Why would creative thinking be meaningful to a technical person? The author shares an anonymous observation that as children we’re taught to stay inside the lines, while as adults we are often expected to think outside the box. Certainly when it comes to technical tasks, our focus is more on logical thinking. But problem solving benefits as much from creative thinking as it does from more logical approaches. How can one cultivate creative thinking? The main idea is that creativity is best flexed and exercised by actively looking for connections and similarities between highly dissimilar elements, rather than focusing on their differences. Some thought exercises are provided to he

FLOSS Weekly Episode 783: Teaching Embedded with the Unphone

Image
This week Jonathan Bennett and Rob Campbell talk with Gareth Coleman and Hamish Cunningham! It’s all about the Unphone, an open source handset sporting an ESP32, color touchscreen, and LoRa radio. It’s open hardware, and used in a 3rd year university course to teach comp sci majors about hardware and embedded development. https://unphone.net/ Did you know you can watch the live recording of the show right in the Hackaday Discord ? Have someone you’d like use to interview? Let us know, or contact the guest and have them contact us! Direct Download in DRM-free MP3. If you’d rather read along, here’s the transcript for this week’s episode . Places to follow the FLOSS Weekly Podcast: Spotify RSS from Blog – Hackaday https://ift.tt/dxWoQPb

Designing A Quality Camera Slider Can Be Remarkably Satisfying

Image
Camera sliders are great creative tools, letting you get smooth controlled shots that can class up any production. [Anthony Kouttron] decided to build one for an engineering class, and he ended up mighty satisfied with what he and his team accomplished. As an engineering class project, this wasn’t a build done on a whim. Instead, [Anthony] and his fellow students spent plenty of time hashing out what they needed this thing to do, and how it should be built. An Arduino was selected as the brains of the operation, as a capable and accessible microcontroller platform. Stepper motors and a toothed belt drive were used to move the slider in a controllable fashion. The slider’s control interface was an HD44780-based character LCD, along with a thumbstick and two pushbuttons. The slider relied on steel tubes for a frame, which was heavy, but cost-effective and easy to fabricate. Much of the parts were salvaged from legendary e-waste bins on the university grounds. The final product was st

How AI Large Language Models Work, Explained Without Math

Image
Large Language Models (LLMs ) are everywhere, but how exactly do they work under the hood? [Miguel Grinberg] provides a great explanation of the inner workings of LLMs in simple (but not simplistic) terms that eschews the low-level mathematics of how they work in favor of laying bare what it is they do. At their heart, LLMs are prediction machines that work on tokens (small groups of letters and punctuation) and are as a result capable of great feats of human-seeming communication. Most technical-minded people understand that LLMs have no idea what they are saying, and this peek at their inner workings will make that abundantly clear. Be sure to also review an illustrated guide to how image-generating AIs work . And if a peek under the hood of LLMs left you hungry for more low-level details, check out our coverage of training a GPT-2 LLM using pure C code . from Blog – Hackaday https://ift.tt/1jEUKeT

Breadboard OS Is An Operating System For The Pi Pico

Image
Operating systems! They’re everywhere these days, from your smart TV to your smartphone. And even in your microcontrollers! Enter BreadboardOS for the Raspberry Pi Pico. BreadboardOS is built on top of FreeRTOS. It’s aim is to enable quick prototyping with the Pi Pico. Don’t confuse operating system with GUI—BreadboardOS is command-line based. You’d typically interface with it via a terminal, but joy of joys—it does support color! Using BreadboardOS is a little different than typical microcontroller development. Creating an application involves adding a “service” which is basically a task in FreeRTOS parlance. The OS handles running your service for you. Via the CLI interface, you can query running services, and start or kill them at will. Meanwhile, running df will happily give you stats on the flash usage of the Pi Pico, and free will tell you how full the memory is doing. If you really want to get raw, you can make calls to control GPIO pins, the SPI hardware, or other peripheral

The Perfect Desktop Kit For Experimenting With Self Driving Cars

Image
When we think about self-driving cars, we normally think about big projects measured in billions of dollars, all funded by major automakers. But you can still dive into this world on a smaller scale, as [jmoreno555] demonstrates. The build consists of a small RC car—an HSP 94123, in fact. It’s got a simple brushed motor inside, driven by a conventional speed controller, and servo-driven steering. A Raspberry Pi 4 is charged with driving the car, but it’s not alone. It’s outfitted with a Google Coral USB stick, which is a machine learning accelerator card capable of 4 trillion operations per second. The car also has a Wemos D1 onboard, charged with interfacing distance sensors to give the car a sense of its environment. Vision is courtesy of a 1.2-megapixel camera with a 160-degree lens, and a stereoscopic camera with twin 75-degree lenses. Software-wise, it’s early days yet. [jmoreno555] is exploring the use of Python and OpenCV to implement basic lane detection and other self drivin

Vibrating Braille Display is Portable

Image
Smartphones are an integral part of life, but what if you can’t see the screen? There is text-to-speech available, but that’s not always handy and can be slow. It also doesn’t help users who can’t hear or see. Refreshable braille devices are also available, but they are expensive and not very convenient to use. [Bmajorspin] proposed a different method and built a prototype braille device that worked directly with a cell phone. The post admits that as the device stands today, it isn’t a practical alternative, but it does work and is ripe for future development to make it more practical. The device saves costs and increases reliability by using six vibration motors to represent the six dots of a braille cell. However, this leads to an important issue. The motor can’t directly mount to the case because you have to feel each one vibrating individually. A spring mounting system ensures that each motor only vibrates the tactile actuator it is supposed to. However, the system isn’t perfect

3D Print a Drill-Powered Helicopter Toy Because It’s Simply Fun

Image
These days, you can get a fully remote-control helicopter that you can fly around your house for about $30. Maybe less. Back in the day, kids had to make do with far simpler toys, like spinning discs that just flew up in the air. [JBV Creative] has built a toy just like that with his 3D printer. It may be simple, but it also looks pretty darn fun. The design is straightforward. It uses a power drill to spin up a geartrain, which in turn drives a small disc propeller. Spin the propeller fast enough and it’ll launch high into the air. The geartrain mounts to the drill via the chuck, and it interfaces with the propeller with a simple toothed coupler. Alternatively, there’s also a hand-cranked version if you don’t have a power drill to hand. Launching is easy. First, the drill spins the propeller up to speed. Then, when the drill’s trigger is released, it slows down, and the propeller spins free of the toothed coupler, with the lift it generates carrying it into the sky. Files are avai

The New Extremely Large Telescopes and The US’ Waning Influence In Astronomy

Image
For many decades, the USA has been at the forefront of astronomy, whether with ground-based telescopes or space-based observatories like Hubble and the JWST. Yet this is now at risk as US astronomers are forced to choose between funding either the Giant Magellan Telescope (GMT) or the Thirty Meter Telescope (TMT) as part of the US Extremely Large Telescope (USELT) program. This rightfully has the presidents of Carnegie Science and Caltech – [Eric D. Isaacs] and [Thomas F. Rosenbaum] respectively – upset, with their opinion piece in the Los Angeles Times going over all the reasons why this funding cut is a terrible idea. The slow death of US astronomy is perhaps best exemplified by the slow death and eventual collapse of the Arecibo radio telescope . Originally constructed as a Cold War era ICBM detector, it found grateful use by radio astronomers, but saw constant budget cuts and decommissioning threats. After Arecibo’s collapse, it’s now China with its FAST telescope that has mos

Broken Lens Provides Deep Dive Into Camera Repair

Image
While most of us are probably willing to pick up the tools and void the warranty on just about anything, often just to see what’s inside, many of us draw the line at camera gear. The tiny screws, the complex mechanisms, and the easily destroyed optical elements are all enough to scare off the average hacker. Not so for [Anthony Kouttron], who tore into a broken eBay Sigma lens and got it working again . Now, to be fair, modern lenses tend to have a lot more in them that’s amenable to repair than back in the old days. And it seemed from the get-go that [Anthony]’s repair was going to be more electronic than optical or mechanical. The 45-mm lens was in fantastic shape physically, but wouldn’t respond to any controls when mounted to a camera body. Removing the lens bayonet mount exposed the main controller PCB, which is tightly packed with SMD components and connectors for the flex cables that burrow further into the lens to its many sensors and actuators. By probing traces with his mul

GPS at Any Speed

Image
[Mellow_Labs] was asked to create a GPS speedometer . It seems simple, but of course, the devil is in the details. You can see the process and the result in the video below. We have to admit that he does things step-by-step. The first step was to test the GPS module’s interface. Then, he tried computing the speed from it and putting the result on a display. However, testing in the field showed that the display was not suitable for outdoor use. That prompted another version with an OLED screen. Picking the right components is critical. It struck us that you probably need a fast update rate from the GPS, too, but that doesn’t seem to be a problem. The other issue is, of course, that you have to have a GPS lock for this to work. Inside the urban canyon, you might be better served with a different method. You might think about an accelerometer, but while that’s easy in theory (velocity is the integration of acceleration), in practice, errors and other issues make that a tough way to do

Sandwizz Promises to Reinvent the Breadboard

Image
The solderless breadboard is perhaps the electronic hobbyist’s most commonly used tool, but let’s be honest, it isn’t exactly anyone’s favorite piece of gear. Even if you’ve got an infinite supply of jumpers in just the right size, any mildly complex circuit quickly becomes a nightmare to plan out and assemble. To say nothing of the annoyance of trying to track down an intermittent glitch, only to find you’ve got a loose wire someplace… The Sandwizz Breadboard hopes to address those problems, and more, by turning the classic breadboard into a high-tech electronics prototyping platform. The Sandwizz not only includes an integrated power supply capable of providing between 1.8 and 5 volts DC, but also features an array of integrated digital and analog components. What’s more, the programmable connection system lets you virtually “wire” the internal and external components instead of wresting with jumper wires. To configure the Sandwizz, you just need to connect to the device’s seria

Emulate a KIM-1 with a Commodore 64

Image
When you think about virtualization, you usually think about making some CPU pretend to be another CPU. However, there are sometimes advantages to making a computer pretend to be the same computer. That’s the case with [oldvcr]’s KIMplement , which emulates a KIM-1 with a 6502 using a Commodore 64, which also uses a 6502.The reason this makes sense is that you have total control over an emulated CPU. If a program, for example, writes to a critical memory location or tries to take over the screen or keyboard, you can easily make the emulator do something more appropriate. Things like breakpoints and single stepping also become trivial. The virtual machine at the heart of it is 6o6 (6502 on 6502), and it seems to perform well. By virtualizing, you can easily protect the system from programs that try to, for example, take over an interrupt vector. This is similar to how x86 protected mode can run old real-mode code in a virtual environment and intervene for certain instructions. The e

Answering All Your iSCSI Scanner Questions

Image
iSCSI is a widely used protocol for exposing SCSI devices over a network connection, and some scanners have in the past been equipped with SCSI ports. So, could you have an iSCSI network scanner? [xssfox] details her journey making a Canoscan FS4000US film scanner work over iSCSI, sparked by someone’s overly-confident StackOverflow comment that it couldn’t be done. Nothing in the spec said it couldn’t actually work, however, and after figuring out a tentative architecture, a hardware setup was put together. No flatbed scanners with SCSI ports could be found on the cheap, so a film scanner had to be procured. After figuring out a few hitches with the loading mechanism and getting a test image locally, it was time to try and build up the software setup, tearing through SCSI compatibility and cabling, driver and PCI pass-through woes, bluescreens, and intermediate software having dropped some of the necessary features by now. Still, [xssfox] eventually exported the scanner as an iSCSI

Hackaday Links: May 12, 2024

Image
Don’t pack your bags for the trip to exoplanet K2-18b quite yet — it turns out that the James Webb Space Telescope may not have detected signs of life there after all. Last year, astronomers reported the possible presence of dimethyl sulfide there, a gas that (at least on Earth) is generally associated with phytoplankton in the ocean. Webb used its infrared spectrometer instruments to look at the light from the planet’s star, a red dwarf about 111 light-years away, as it passed through the hydrogen-rich atmosphere. The finding was sort of incidental to the discovery of much stronger signals for methane and carbon dioxide, but it turns out that the DMS signal might have just been overlap from the methane signal. It’s too bad, because K2-18b seems to be somewhat Earth-like, if you can get over the lack of oxygen and the average temperature just below freezing. So, maybe not a great place to visit, but it would be nice to see if life, uh, found a way anywhere else in the universe. Atte

Autochrome For The 2020s

Image
For all intents and purposes, photography here in 2024 is digital. Of course chemical photography still exists, and there are a bunch of us who love it for what it is, but even as we hang up our latest strip of negatives to dry we have to admit that it’s no longer mainstream. Among those enthusiasts who work with conventional black-and-white or dye-coupler colour film are a special breed whose chemistry takes them into more obscure pathways. Wet-collodion plates for example, or in the case of [Jon Hilty], the Lumière autochrome process . This is a colour photography process from the early years of the twentieth century, employing a layer of red, green, and blue grains above a photosensitive emulsion. Its preparation is notoriously difficult, and he’s lightened the load somewhat with the clever use of CNC machinery to automate some of it. Pressing the plates via CNC His web site has the full details of how he prepares and exposes the plates, so perhaps it’s best here to recap how