Posts

Showing posts from June, 2024

Try Out MCUs With This Jumperable TSSOP20 Adapter

Image
There are so many new cool MCUs coming out, and you want to play with all of them, but, initially, they tend to be accessible as bare chips. Devboards might be hard to get, not expose everything, or carry a premium price. [Willmore] has faced this problem with an assortment of new WCH-made MCUs, and brings us all a solution – a universal board for TSSOP20-packaged MCUs, breadboard-friendly and adaptable to any pinout with only a few jumpers on the underside. The board brings you everything you might want from a typical MCU breakout – an onboard 3.3V regulator, USB series resistors, a 1.5K pullup, decoupling capacitors, and a USB-C port. All GPIOs are broken out, and there’s a separate header you can wire up for all your SWD/UART/USB/whatever needs – just use the “patch panel” on the bottom of the board and pick the test points you want to join. [Willmore] has used these boards for the CH32Vxxx family, and they could, no doubt, be used for more – solder your MCU on, go through the pi

Apple May Use Electrical Debonding For Battery Replacement

Image
As a result of the European Union’s push for greater repairability of consumer devices like smartphones, Apple sees itself forced to make the batteries in the iPhone user-replaceable by 2027. Reportedly , this has led Apple to look at using electroadhesion rather than conventional adhesives which require either heat, isopropyl alcohol, violence, or all of the above to release. Although details are scarce, it seems that the general idea would be that the battery is wrapped in metal, which, together with the inside of the metal case, would allow for the creation of a cationic/anionic pair capable of permanent adhesion with the application of a low-voltage DC current. This is not an entirely wild idea. Tesa has already commercialized it in the electrical debonding form of its Debonding on Demand product . This uses a tape that’s applied to one side of the (metal) surfaces, with a 5 bar pressure being applied for 5 seconds. Afterwards, the two parts can be released again without residue

Go Forth With This Portable Programmer

Image
When choosing a low-level language, it’s hard to beat the efficiency of Forth while also maintaining some amount of readability. There are open source options for the language which makes it accessible, and it maintains its prevalence in astronomical and other embedded systems for its direct hardware control and streamlined use of limited resources even though the language started over 50 years ago. Unlike 50 years ago, though, you can now take your own self-contained Forth programmer on the go with you . The small computer is built on a design that [Dennis] built a while back called my4TH which has its own dedicated 8-bit CPU and can store data in a 256 kB EEPROM chip. Everything else needed for the computer is built in as well but that original design didn’t include a few features that this one adds, most notably a small 40×4 character LCD and a keyboard. The build also adds a case to tie everything together, with ports on the back for I2C and power plus an RS232 port. An optional

Building a Hydraulic System With 3D Printed SLA Resin Parts

Image
Showing off the 3D-printed hydraulics system. (Credit: Indeterminate Design, YouTube) Hydraulics are incredibly versatile, but due to the pressures at which they operate, they are also rather expensive and not very DIY-friendly. This isn’t to say that you cannot take a fair shot at a halfway usable 3D-printed set of hydraulics, as [Indeterminate Design] demonstrates in a recent video . Although not 100% 3D-printed, it does give a good idea of how far you can push plastic-based additive manufacturing in this field. Most interesting is the integration of the gear pump, 4-way selector valve, and relief valve into a single structure, which was printed with a resin printer (via the JLC3DP 3D print service). After bolting on the (also 3D printed) clear reservoir and assembling the rest of the structure including the MR63 ball bearings, relief spring valve, and pneumatic fittings it was ready to be tested. The (unloaded) gear pump could pump about 0.32 L/minute, demonstrating its basic f

8MM Digitization For Anyone

Image
There’s a pleasing retro analogue experience to shooting Super 8 film, giving as it does the feel of a 1970s home movie to your work. But once you’ve had the film developed, there’s a need for a projector to enjoy the result. Far better to digitize it for a more modern viewing and editing experience. [Elbert] has made a digitizer for 8mm film which takes the best approach, snapping each frame individually to be joined together in a video file as a whole. The frame of the device is 3D printed, but some parts of a film transport must be higher quality than a printed part can deliver. These, in particular the sprockets, are salvaged from a film viewer, and the movement is powered by a set of stepper motors. The steppers are controlled by an ESP32, and the optics are provided by a USB microscope. All this is hooked up to a PC which grabs each image, and finally stitches them all together using ffmpeg . As anyone who has dabbled in 8mm film will tell you, there is a lot in the quality o

3D Printing with Sublime Sublimation

Image
[Teaching Tech] got an interesting e-mail from [Johan] showing pictures of 3D prints with a dye-sublimated color image on the surface. Normally, we think of dye sublimation, we think of pressing color pictures onto fabric, especially T-shirts. But [Johan] uses a modified Epson inkjet printer and has amazing results, as you can see in the video below. The printers use separate tanks for ink, which seems to be the key. If you already have an Espon “tank” printer, you are halfway there, but if you don’t have one, a cheap one will set you back less than $200 and maybe even less if you pick one up used. You have to fill bottles with special dye, of course. You can also use the printer to make things like T-shirts. The idea is to print a dye transfer page and place it on the bed before you start printing. The sublimation dye is activated with heat, and, of course, you are shooting out hot plastic, so the image will transfer to the plastic. [Teaching Tech] explains the best settings to

2024 Business Card Challenge: POV Fidget Keeps Your Info In Their Hands

Image
So what if we’re halfway through 2024? People who needed to fidget all along still need something to do with their hands. So why not hand them a solution with your information on it? Not only will this spin nicely, the spinning action will use magnets to energize PCB coils and light up LEDs for some persistence of vision action. Designing the PCB was easier than you might imagine thanks to KiMotor , a KiCad plugin to automate the design of parametric PCB motors. Mechanical testing went pretty well with the bearings and magnets that [mulcmu] had on hand, along with a scrap PCB as the sacrifice. Although a bit difficult to hold, it spins okay with just the bearing and the shaft. Once the boards arrived, it was time to test the electrical side. So far, things are not looking good — [mulcmu] is only getting a few tens of mV out of the rectifier — but they aren’t giving up hope yet. We can’t wait to see this one in action! Hurry! This is the last weekend to enter the 2024 Business Card

Reviving a Free 1990s Millport CNC Vertical Mill

Image
When faced with the offer of free machining equipment, there is no realistic way to say ‘no’. This is how [Anthony Kouttron]’s brother [Thomas] got to pick up a large 1990s-era CNC machine as a new companion for his growing collection of such equipment. The trickiest part of the move to the new location was getting the machine to fit through the barn doors, requiring some impromptu disassembly of the Z-axis assembly, which required the use of an engine crane and some fine adjustments with the reinstallation. With that [Thomas] and [Anthony] got to gawk at their new prize in its new home. This Millport vertical mill is effectively a Taiwanese clone of the Bridgeport vertical mill design, though using an imported servo control system from Anilam. The most exciting part about a CNC machine like this is usually the electronics, especially for a well-used machine. Fortunately the AT-style PC and expansion cards looked to be in decent condition, and the mill’s CRT-based controller popped

8-Bits and 1,120 Triodes

Image
While it’s currently the start of summer in the Northern Hemisphere, it will inevitably get cold again. If you’re looking for a unique way of heating your workshop this year, you could do worse than build an 8-bit computer with a bunch of 6N3P vacuum tubes. While there are some technical details, you might find it a challenging build. But it is still an impressive sight, and it took 18 months to build a prototype and the final version . You can find the technical details if you want to try your hand. Oh, did we mention it takes about 200 amps? One of the prototype computers plays Pong on a decidedly low-tech display, which you can see below. The architecture has 8 data bits and 12 address bits. It only provides six instructions, but that keeps the tube count manageable. Each tube has two triodes in one envelope and form a NOR gate which is sufficient to build everything else you need. In addition to tubes, there are reed relays and some NVRAM, a modern conceit. Operating instructi

Activated Alumina for Desiccating Your Filament

Image
When you first unwrap a shiny new roll of filament for your FDM printer, it typically has a bag of silica gel inside. While great for keeping costs low on the manufacturing side, is silica gel the best solution to keep your filament dry at home? Frustrated with the consumable nature and fussy handling of silica gel beads, [Build It Make It] sought a more permanent way to keep his filament dry . Already familiar with activated alumina beads, he crafted a desiccant cylinder that can be popped into the oven all at once instead of all that tedious mucking about with emptying and refilling plastic capsules. A length of aluminum intake pipe, some high temperature epoxy, and aluminum mesh are all combined to make a simple, sealed cylinder. During the process, he found that using a syringe filled with the epoxy led to a much more precise application to the aluminum cylinder, so he recommends starting out that way if you make these for yourself. We suspect something with a less permanent at

Portable, Full-Size Arcade Cabinets

Image
Believe it or not, there was a time when the only way for many of us to play video games was to grab a roll of quarters and head to the mall. Even though there’s a working computer or video game console in essentially every house now doesn’t mean we don’t look back with a certain nostalgia on those times, though. Some have turned to restoring vintage arcade cabinets and others build their own. This hackerspace got a unique request for a full-sized arcade cabinet that was also easily portable as well . The original request was for a portable arcade cabinet, and the original designs were for a laptop-like tabletop arcade. But further back-and-forth made it clear they wanted full-size cabinets that just happened to also be portable. So with that criteria in mind the group started building the units. The updated design is modular, allowing the controls, monitor, and Raspberry Pi running the machines to be in self-contained units, with the cabinets in two parts that can quickly be assembl

A Previously Unknown Supplier For A Classic Chip

Image
It’s common enough for integrated circuits to be available from a range of different suppliers, either as licensed clones, or as reverse-engineered proprietary silicon. In the case of a generic circuit such as a cheap op-amp it matters little whose logo adorns the plastic, but when the part in question is an application processor it assumes much more importance. In the era of the 486 and Pentium there were a host of well-known manufacturers producing those chips, so it’s a surprise decades later to find that there was another, previously unknown. That’s just what [Doc TB] has done though, finding a 486 microprocessor from Shenzhen State Micro . That’s not a brand we ever saw in our desktop computers back in the 1990s. Analysis of a couple of these chips, a DX33 and a DX2-66, shows them to have very similar micro-architecture but surprisingly a lower power consumption suggesting a smaller fabrication process. There’s the fascinating possibility that these might have been manufactured

Llama.ttf is AI, in a Font

Image
It’s a great joke, and like all great jokes it makes you think. [Søren Fuglede Jørgensen] managed to cram a 15 M parameter large language model into a completely valid TrueType font: llama.ttf . Being an LLM-in-a-font means that it’ll do its magic across applications – in your photo editor as well as in your text editor. What magic, we hear you ask? Say you have some text, written in some non-AI-enabled font. Highlight that, and swap over to llama.ttf. The first thing it does is to change all “o” characters to “ø”s, just like [Søren]’s parents did with his name. But the real magic comes when you type a length of exclamation points. In any normal font, they’re just exclamation points, but llama.ttf replaces them with the output of the TinyStories LLM, run locally in the font . Switching back to another font reveals them to be exclamation points after all. Bønkers! This is all made possible by the HarfBuzz font extensions library . In the name of making custom ligatures and other tex

FLOSS Weekly Episode 789: You Can’t Eat the Boards

Image
This week Jonathan Bennett and Doc Searls chat with Igor Pecovnik and Ricardo Pardini about Armbian, the Debian-based distro tailor made for single-board computers. There’s more than just Raspberry Pi to talk about, with the crew griping about ancient vendor kernels, the less-than-easy ARM boot process, and more! – https://www.armbian.com/ – https://github.com/armbian Did you know you can watch the live recording of the show right in the Hackaday Discord ? Have someone you’d like use to interview? Let us know, or contact the guest and have them contact us! Take a look at the schedule here . Direct Download in DRM-free MP3. If you’d rather read along, here’s the transcript for this week’s episode . Places to follow the FLOSS Weekly Podcast: Spotify RSS from Blog – Hackaday https://ift.tt/tXK4i8R

Decoding Meshtastic with GNU Radio

Image
Meshtastic is a way to build mesh networks using LoRa that is independent of cell towers, hot spots or traditional repeaters. It stands to reason that with an SDR and GNU Radio, you could send and receive Meshtastic messages. That’s exactly what [Josh Conway] built, and you can see a video about the project, Meshtastic_SDR , below. The video is from [cemaxecuter], who puts the library through its paces. For hardware, the video uses a Canary I as well as the WarDragon software-defined radio kit which is an Airspy R2 and a mini PC running Dragon OS — a Linux distribution aimed at SDR work —  in a rugged case. GNU Radio, of course, uses flows which are really just Python modules strung together with a GUI. The GNU blocks send and receive data via TCP port, so using the radio as a data connection is simple enough. The flow graph itself for the receiver looks daunting, but we have a feeling you won’t change the default very much. If you’ve wanted to dip your toe into Meshtastic or you

As Cheap As Chips: The MiFare Ultra Light Gets A Closer Look

Image
If you take public transport in many of the world’s cities, your ticket will be an NFC card which you scan to gain access to the train or bus. These cards are disposable, so whatever technology they use must be astonishingly cheap. It’s one of these which [Ken Shirriff] has turned his microscope upon, a Montreal MĂŠtro ticket, and his examination of the MiFare Ultra Light it contains is well worth a read . The cardboard surface can be stripped away from the card to reveal a plastic layer with a foil tuned circuit antenna. The chip itself is a barely-discernible dot in one corner. For those who like folksy measurements, smaller than a grain of salt. On it is an EEPROM to store its payload data, but perhaps the most interest lies in the support circuitry. As an NFC chip this has a lot of RF circuitry, as well as a charge pump to generate the extra voltages to charge the EEPROM. In both cases the use of switched capacitors plays a part in their construction, in the RF section to vary the

Paul Allen’s Living Computers Museum and Labs to be Auctioned

Image
After the Living Computers museum in Seattle closed like so many museums and businesses in 2020 with the pandemic, there were many who feared that it might not open again. Four years later this fear has become reality , as the Living Computers: Museum + Labs (LCM+L, for short) entire inventory is being auctioned off. This occurs only 12 years after the museum and associated educational facilities were opened to the public. Along with Allen’s collection at the LCM+L, other items that he had been collecting until his death in 2018 will also be auctioned at Christie’s, for a grand total of 150 items in the Gen One: Innovations from the Paul G. Allen Collection . In 2022 Allen’s art collection had seen the auction block, but this time it would seem that the hammer has come for this museum. Unique about LCM+L was that it featured vintage computing systems that visitors could interact with and use much like they would have been used back in the day, rather than being merely static display

3D Scanning, Phone Edition

Image
It seems to make sense. If you have a 3D printer, you might wish you could just scan some kind of part and print it — sort of like a 3D photocopier. Every time we think about this, though, we watch a few videos and are instantly disappointed by the results, especially with cheap scanners. If you go the hardware route, even cheap is relative. However, you can — in theory — put an app on your phone to do the scanning. Some of the apps are free, and some have varying costs, but, again, it seems like a lot of work for an often poor result. So we were very interested in the video from [My 3D Print Lab] where he uses his phone and quite a few different apps and objectively compares them . Unsurprisingly, one of the most expensive packages that required a monthly or annual subscription created an excellent scan. He didn’t print from it, though, because it would not let you download any models without a fee. The subject part was an ornate chess piece, and the program seems to have captured i

ESP-Hosted Turns ESP32 Into Linux WiFi/BT Adapter

Image
While we are used to USB WiFi adapters, embedded devices typically use SDIO WiFi cards, and for good reasons – they’re way more low-power, don’t take up a USB port, don’t require a power-sipping USB hub, and the SDIO interface is widely available. However, SDIO cards and modules tend to be obscure and proprietary beyond reason. Enter ESP-Hosted – Espressif’s firmware and driver combination for ESP32 ( press release )( GitHub ), making your ESP32 into a WiFi module for either your Linux computer (ESP-Hosted-NG) or MCU (ESP-Hosted-FG). In particular, ESP-Hosted-NG his turns your SPI- or SDIO-connected ESP32 (including -S2/S3/C2/C3/C6 into a WiFi card, quite speedy and natively supported by the Linux network stack, as opposed to something like an AT command mode. We’ve seen this done with ESP8266 before – repurposing an ESP8089 driver from sources found online, making an ESP8266 into a $2 WiFi adapter for something like a Pi. The ESP-Hosted project is Espressif-supported, and it works

Injection Molding Using a 3D Printer

Image
Recently [Stefan] of CNC Kitchen took a gander at using his gaggle of 3D printers to try injection molding (IM). Although the IM process generally requires metal molds and specialized machinery, 3D printers can be used for low-volume IM runs which is enough for limited production runs and prototyping before committing to producing expensive IM molds. In the case of [Stefan], he followed Form Labs’ guidance to produce molds from glass-infused Rigid 10K resin (heat deflection temperature of 218 °C). These molds are very rigid, as the ceramic-like noise when [Stefan] taps two together attests to. Injection molded bolt, with imperfections on the head. (Credit: Stefan, CNC Kitchen) The actual injection process is where things get more hairy for [Stefan], as he attempts to push the clamped-shut mold against the nozzle of the FDM printer to inject the molten plastic, rather than using an IM press . With PLA at standard extrusion temperature the plastic barely gets into the mold before

One-handed PS-OHK Keyboard Doesn’t Need Chording or Modifier Keys

Image
Most one-handed keyboards rely on modifier keys or chording (pressing multiple keys in patterns) to stretch the functionality of a single hand’s worth of buttons. [Dylan Turner]’s PS-OHK takes an entirely different approach, instead putting 75 individual keys within reach of a single hand, with a layout designed to be practical as well as easy to get used to. We can’t help but notice Backspace isn’t obvious in the prototype, but it’s also a work in progress. The main use case of the PS-OHK is for one hand to comfortably rest at the keyboard while the other hand manipulates a mouse in equal comfort. There is a full complement of familiar special keys (Home, End, Insert, Delete, PgUp, PgDn) as well as function keys F1 to F12 which helps keep things familiar. As for the rest of the layout, we like the way that [Dylan] clearly aimed to maintain some of the spatial relationship of  “landmark” keys such as ESC, which is positioned at the top-left corner of its group. Similarly, arrow

How the CD-ROM Lost the Multimedia Dream to the Internet

Image
High-tech movie guides on CD-ROM; clearly the future had arrived in 1994. In the innocent days of the early 90s the future of personal computing still seemed to be wide open, with pundits making various statements regarding tis potential trajectories. To many, the internet and especially the World Wide Web didn’t seem to be of any major significance, as it didn’t have the reach or bandwidth for the Hot New Thing tm in the world of PCs: multimedia. Enter the CD-ROM, which since its introduction in 1985 had brought the tantalizing feature of seemingly near-infinite storage within reach, and became cheap enough for many in the early 90s. In a recent article by [Harry McCracken] he reflects on this era, and how before long it became clear that it was merely a bubble. Of course, there was a lot of good in CD-ROMs, especially when considering having access to something like Encarta before Wikipedia and broadband internet was a thing. It also enabled software titles to be distributed w

2024 Business Card Challenge: Go Tic-Tac-Toe-to-Toe with Them

Image
There is perhaps no more important time to have a business card than when you’re in college, especially near the end when you’re applying for internships and such. And it’s vital that you stand out from the crowd somehow. To that end, Electrical & Computer Engineer [Ryan Chan] designed a tidy card that plays tic-tac-toe . Instead of X and O, the players are indicated by blue and red LEDs. Rather than having a button at every position, there is one big control button that gets pressed repeatedly until your LED is in the desired position, and then you press and hold to set it and switch control to the other player. In addition to two-player mode, the recipient of your card can also play alone against the ATMega. The brains of this operation is an ATMega328P-AU with the Arduino UNO bootloader for ease of programming. Schematic and code are available if you want to make your own, but we suggest implementing some type of changes to make it your own. Speaking of, [Ryan]  has several n