Posts

Featured Post

A Logical Clock That Pretends To Be Analog

Image
[kcraske] had a simple plan for their clock build. They wanted a digital clock that was inspired by the appearance of an analog one, and they only wanted to use basic logic, with no microprocessors involved. Ultimately, they achieved just that. Where today you might build a clock based around a microcontroller and a real-time clock module, or by querying a network time server, [kcraske] is doing all the timekeeping in simpler hardware. The clock is based around a bunch of 74-series logic chips, a CD4060 binary counter IC, and a 32.768 KHz crystal, which is easy to divide down to that critical 1 Hz. Time is displayed on the rings of LEDs around the perimeter of the clock—12 LEDs for hours, and 60 each for minutes and seconds. Inside the rings, the ICs that make up the clock are arranged in a pleasant radial configuration. It’s a nice old-school build that reminds us not everything needs to run at 200 MHz or hook up to the internet to be worthwhile. We’ve featured some other fun old-s...

2025 Component Abuse Challenge: Nail Your Next Decal

Image
One of the hardest parts of a project — assuming it makes it that far — is finishing it up in an aesthetically pleasing manner. As they say, the devil is in the details, wearing Prada. Apparently the devil also has an excellent manicure, because [Tamas Feher] has come up with a way to introduce incredibly detailed decals (down to 0.1 mm) in cheap, repeatable fashion, using a technique borrowed from the local nail salon.  The end result can look quite a bit better than the test piece above. For those who aren’t in to nail art (which, statistically speaking, is likely to be most of you) there is a common “stamping” technique for putting details onto human fingernails. Nail polish is first applied to voids on a stencil-like plate, then picked up by a smooth silicone stamper, which is then pressed against the nail, reproducing the image that was on the stencil. If that’s clear as mud, there’s a quick demo video embedded bellow. There’s a common industrial technique that works the ...

UK’s MAST Upgrade Tokamak Stabilizes Plasma with Edge Magnetic Fields

Image
Although nuclear fusion is exceedingly easy to achieve, as evidenced by desktop fusors, the real challenges begin to pop up whenever you try to sustain a plasma for extended periods of time, never mind trying to generate net energy output. Plasma instability was the reason why 1950s UK saw its nuclear fusion hopes dashed when Z-pinch fusion reactors failed to create a stable plasma, but now it seems that another UK fusion reactor is one step closer to addressing plasma instability, with the MAST Upgrade tokamak demonstrating the suppressing of ELMs. ELMs, or edge localized modes, are instabilities that occur at the edge of the plasma. A type of magnetohydrodynamic instability , ELMs were first encountered after the switch to high-confinement mode (H-mode) to address instability issues encountered in the L-mode operating regime of previous tokamaks. These ELMs cause damage on the inside of the reactor vessel with these disturbances ablating the plasma-facing material. One of the sol...

Tinkercad in Color

Image
Tinkercad is famous for having lots of colors in the interface. But once you export an STL, that file is notoriously monochrome. If you are printing with a single color printer, no problems. But if you have a color printer, what do you do? [CHEP] shows some options , including a relatively new one, in the video below. The simple way is to “paint” the STL inside your slicer. But as [CHEP] shows, that is a pain and also has some undesirable side effects. A better approach is to export each part (or, at least, each part of the same color) into separate STL files, which you can then import together in the slicer. You still have to paint, but you don’t have to select different faces, and the resulting coloring is more what you’d expect. However, we also learn about a new Tinkercad feature: bundle groups. This is like the traditional “union group,” except it preserves the part structure in the export file. Now you can import a single file, split it into parts, and get a similar result to...

Handheld PC Build Is Pleasantly Chunky

Image
The cool thing about building your own computer is that you don’t have to adhere to industry norms of form and function. You can build whatever chunky, awesome thing your heart desires, and that’s precisely what [Rahmanshaber] did with the MutantC cyberdeck. The build is based around a Raspberry Pi Compute Module 4. If you’re unfamiliar with the Compute Module, it’s basically a Raspberry Pi that has been designed specifically for easy integration into a larger carrier PCB. In this case, the carrier PCB interfaces all the other necessary gear to make this a fully functional computer. The PCB is installed inside a vaguely-rectangular 3D-printed enclosure, with a 5-inch TFT LCD on a sliding mount. Push the screen up, and it reveals a small-format keyboard for text entry. There’s also a hall-effect joystick and a couple of buttons for mouse control to boot. [Rahmanshaber] has designed the computer to run off a couple of different battery packs—you can use a pair of 18650 cells if you lik...

FLOSS Weekly Episode 852: Sir, This is a Wendy’s

Image
This week Jonathan talks to Robert Wolff about DevEco ! How did this developer group come to be, and what is its purpose? What are the lessons learned about building communities and working with others? Watch to find out! https://linktr.ee/deveco https://linktr.ee/robertwolff https://linktr.ee/thedeveco https://thedeveco.com/ https://discord.gg/deveco Did you know you can watch the live recording of the show right on our YouTube Channel ? Have someone you’d like us to interview? Let us know, or contact the guest and have them contact us! Take a look at the schedule here . Direct Download in DRM-free MP3. If you’d rather read along, here’s the transcript for this week’s episode . Places to follow the FLOSS Weekly Podcast: Spotify RSS Theme music: “Newer Wave” Kevin MacLeod (incompetech.com) Licensed under Creative Commons: By Attribution 4.0 License from Blog – Hackaday https://ift.tt/P08crTF

Tinkercad Continues to Grow Up

Image
It is easy to write off Tinkercad as a kid’s toy. It is easy enough for kids to learn and it uses bright colors looking more like a video game than a CAD tool. We use a variety of CAD tools, but for something quick, sometimes Tinkercad is just the ticket. Earlier this year, Tinkercad got a sketch feature, something many other CAD programs have and, now, you can even revolve the sketch to form complex objects. Tinkercad guru [HL ModTech] shows you how in the video below. It wasn’t long ago that we needed to cut an irregular shape out of an STL and we found the sketch feature whic was perfect for that purpose. If you’ve used other CAD tools, you’ll know that sketches are typically 2D shapes that get changed into a 3D shape. The traditional thing is to simply extrude it, so if you draw a circle in 2D, you get a cylinder. However, you can also revolve a profile around a center point. In that case, a circle would give you a torus or, you know, a doughnut-shape. In Tinkercad these are t...