Posts

Featured Post

How Italians Got Their Power

Image
We take for granted that electrical power standards are generally unified across countries and territories. Europe for instance has a standard at 230 volts AC, with a wide enough voltage acceptance band to accommodate places still running at 220 or 240 volts. Even the sockets maintain a level of compatibility across territories, with a few notable exceptions. It was not always this way though, and to illustrate this we have [Sam], who’s provided us with a potted history of mains power in Italy . The complex twists and turns of power delivery in that country reflect the diversity of the power industry in the late 19th and early 20th century as the technology spread across the continent. Starting with a table showing the impressive range of voltages found across the country from differing power countries, it delves into the taxation of power in Italy which led to two entirely different plug standards, and their 110/220 volt system. Nationalization may have ironed out some of the kinks

Winamp Source Code Will be Opened Up, Company Says

Image
Recently the company currently in charge of the Winamp media player – formerly Radionomy, now Llama Group – announced that it will be making the source code of the player ‘available to developers’. Although the peanut gallery immediately seemed to have jumped to the conclusion that this meant that the source would be made available to all on the announced 24 September 2024 date, reading between the lines of the press release gives a different impression. First there is the sign-up form for ‘FreeLlama’ where interested developers can sign up, with a strong suggestion that only vetted developers will be able to look at the code, which may or may not be accompanied by any non-disclosure agreements. It would seem appropriate to be skeptical considering Winamp’s rocky history since AOL divested of it in 2013 with version 5.666 and its new owner Radionomy not doing much development on the software except for adding NFT and crypto/blockchain features in 2022. The subsequent Winamp online

Improved 3D Scanning Rig Adds Full-Sized Camera Support

Image
There are plenty of reasons to pick up or build a 3D scanner. Modeling for animation or special effects, reverse engineering or designing various devices or products, and working with fabrics and clothing are all well within the wide range of uses for these tools. [Vojislav] built one a few years ago which used an array of cameras to capture 3D information but the Pi camera modules used in this build limited the capabilities of the scanner in some ways. [Vojislav]’s latest 3D scanner takes a completely different approach by using a single high-quality camera instead . The new 3D scanner is built to carry a full-size DSLR camera, its lens, and a light. Much more similarly to how a 3D printer works, the platform moves the camera around the object in programmable steps for the desired 3D scan. The object being scanned sits on a rotating plate as well, allowing for the entire object to be scanned without needing to move the camera through a full 180° in two axes. The scanner can also be

Emulating Biology For Robots With Rolling Contact Joints

Image
Joints are an essential part in robotics, especially those that try to emulate the motion of (human) animals. Unlike the average automaton, animals are not outfitted with bearings and similar types of joints, but rather rely sometimes on ball joints and a lot on rolling contact joints (RCJs). These RCJs have the advantage of being part of the skeletal structure, making them ideal for compact and small joints. This is the conclusion that [Breaking Taps] came to as well while designing the legs for a bird-like automaton. These RCJs do not just have the surfaces which contact each other while rotating, but also provide the constraints for how far a particular joint is allowed to move, both in the forward and backward directions as well as sideways. In the case of the biological version these contact surfaces are also coated with a constantly renewing surface to prevent direct bone-on-bone contact. The use of RCJs is rather common in robotics, with the humanoid DRACO 3 platform as detai

Raspberry Pi Files Paperwork With The London Stock Exchange

Image
If you’re a regular visitor to the Raspberry Pi website and you have a sharp eye, you may have noticed during the last few days a new link has appeared in their footer. Labelled “ Investor relations “, it holds links to the documents filed with the London Stock Exchange of their intention to float. In other words, it’s confirmation of their upcoming share offering. It has been interesting to watch the growth of Raspberry Pi over the last twelve years, from cottage industry producing a thousand boards in China, to dominating the SBC market and launching their own successful silicon. Without either a crystal ball or a window into Eben Upton’s mind, we’re as unreliable as anyone else when it comes to divining their future path. But since we’re guessing that it will involve ever more complex silicon with a raspberry logo, it’s obvious that the float will give them the investment springboard they need. For those of us who have been around for a long time this isn’t the first company in

Is The Frequency Domain a Real Place?

Image
When analyzing data, one can use a variety of transformations on the data to massage it into a form that works better to tease out the information one is interested in. One such example is the application of the Fourier transform, which transforms a data set from the time domain into the frequency domain. Yet what is this frequency domain really? After enticing us to follow the white rabbit down a sudden plummet into the intangible question of what is and what is not, [lcamtuf] shows us around aspects of the frequency domain and kin. One thing about the (discrete) Fourier transform is that it is excellent at analyzing data that consists out of sinewaves, such as audio signals. Yet when using the Fourier transform for square waves, the resulting output is less than useful, almost as if square waves are not real. Similarly, other transforms exist which work great for square waves, but turn everything else into meaningless harmonics. Starting with the discrete cosine transform (DCT), t

MIDI Spoon Piano Is Exactly What You Think It Is

Image
Pianos traditionally had keys made out of ivory, but there’s a great way to avoid that if you want to save the elephants. You can build a keyboard using spoons, as demonstrated by [JCo Audio].  The build relies on twelve metal spoons to act as the keys of the instrument. They’re assembled into a wooden base in a manner roughly approximating the white and black keys of a conventional piano keyboard, using 3D-printed inserts to hold them in place. They’re hooked up to a Raspberry Pi Pico via a Pico Touch 2 board , which allows the spoons to be used as capacitive touch pads. Code from [todbot] was then used to take input from the 12 spoons and turn it into MIDI data. From there, hooking the Pi Pico up to a PC running some kind of MIDI synth is enough to make sounds. It’s a simple build, but a functional one. Plus, it lets you ask your friends if they’d like to hear you play the spoons. The key here is to make a big show of hooking your instrument up to a laptop while explaining you’re